3.1.29 \(\int \frac {x^3 (a+b \text {ArcSin}(c x))}{d-c^2 d x^2} \, dx\) [29]

Optimal. Leaf size=144 \[ -\frac {b x \sqrt {1-c^2 x^2}}{4 c^3 d}+\frac {b \text {ArcSin}(c x)}{4 c^4 d}-\frac {x^2 (a+b \text {ArcSin}(c x))}{2 c^2 d}+\frac {i (a+b \text {ArcSin}(c x))^2}{2 b c^4 d}-\frac {(a+b \text {ArcSin}(c x)) \log \left (1+e^{2 i \text {ArcSin}(c x)}\right )}{c^4 d}+\frac {i b \text {PolyLog}\left (2,-e^{2 i \text {ArcSin}(c x)}\right )}{2 c^4 d} \]

[Out]

1/4*b*arcsin(c*x)/c^4/d-1/2*x^2*(a+b*arcsin(c*x))/c^2/d+1/2*I*(a+b*arcsin(c*x))^2/b/c^4/d-(a+b*arcsin(c*x))*ln
(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)/c^4/d+1/2*I*b*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))^2)/c^4/d-1/4*b*x*(-c^2*x^
2+1)^(1/2)/c^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4795, 4765, 3800, 2221, 2317, 2438, 327, 222} \begin {gather*} \frac {i (a+b \text {ArcSin}(c x))^2}{2 b c^4 d}-\frac {\log \left (1+e^{2 i \text {ArcSin}(c x)}\right ) (a+b \text {ArcSin}(c x))}{c^4 d}-\frac {x^2 (a+b \text {ArcSin}(c x))}{2 c^2 d}+\frac {i b \text {Li}_2\left (-e^{2 i \text {ArcSin}(c x)}\right )}{2 c^4 d}+\frac {b \text {ArcSin}(c x)}{4 c^4 d}-\frac {b x \sqrt {1-c^2 x^2}}{4 c^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2),x]

[Out]

-1/4*(b*x*Sqrt[1 - c^2*x^2])/(c^3*d) + (b*ArcSin[c*x])/(4*c^4*d) - (x^2*(a + b*ArcSin[c*x]))/(2*c^2*d) + ((I/2
)*(a + b*ArcSin[c*x])^2)/(b*c^4*d) - ((a + b*ArcSin[c*x])*Log[1 + E^((2*I)*ArcSin[c*x])])/(c^4*d) + ((I/2)*b*P
olyLog[2, -E^((2*I)*ArcSin[c*x])])/(c^4*d)

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3800

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(m + 1))), x
] - Dist[2*I, Int[(c + d*x)^m*(E^(2*I*(e + f*x))/(1 + E^(2*I*(e + f*x)))), x], x] /; FreeQ[{c, d, e, f}, x] &&
 IGtQ[m, 0]

Rule 4765

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[-e^(-1), Subst[In
t[(a + b*x)^n*Tan[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^3 \left (a+b \sin ^{-1}(c x)\right )}{d-c^2 d x^2} \, dx &=-\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{2 c^2 d}+\frac {\int \frac {x \left (a+b \sin ^{-1}(c x)\right )}{d-c^2 d x^2} \, dx}{c^2}+\frac {b \int \frac {x^2}{\sqrt {1-c^2 x^2}} \, dx}{2 c d}\\ &=-\frac {b x \sqrt {1-c^2 x^2}}{4 c^3 d}-\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{2 c^2 d}+\frac {\text {Subst}\left (\int (a+b x) \tan (x) \, dx,x,\sin ^{-1}(c x)\right )}{c^4 d}+\frac {b \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{4 c^3 d}\\ &=-\frac {b x \sqrt {1-c^2 x^2}}{4 c^3 d}+\frac {b \sin ^{-1}(c x)}{4 c^4 d}-\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{2 c^2 d}+\frac {i \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^4 d}-\frac {(2 i) \text {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1+e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{c^4 d}\\ &=-\frac {b x \sqrt {1-c^2 x^2}}{4 c^3 d}+\frac {b \sin ^{-1}(c x)}{4 c^4 d}-\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{2 c^2 d}+\frac {i \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^4 d}-\frac {\left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c^4 d}+\frac {b \text {Subst}\left (\int \log \left (1+e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^4 d}\\ &=-\frac {b x \sqrt {1-c^2 x^2}}{4 c^3 d}+\frac {b \sin ^{-1}(c x)}{4 c^4 d}-\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{2 c^2 d}+\frac {i \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^4 d}-\frac {\left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c^4 d}-\frac {(i b) \text {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{2 c^4 d}\\ &=-\frac {b x \sqrt {1-c^2 x^2}}{4 c^3 d}+\frac {b \sin ^{-1}(c x)}{4 c^4 d}-\frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{2 c^2 d}+\frac {i \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c^4 d}-\frac {\left (a+b \sin ^{-1}(c x)\right ) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{c^4 d}+\frac {i b \text {Li}_2\left (-e^{2 i \sin ^{-1}(c x)}\right )}{2 c^4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(312\) vs. \(2(144)=288\).
time = 0.08, size = 312, normalized size = 2.17 \begin {gather*} -\frac {2 a c^2 x^2+b c x \sqrt {1-c^2 x^2}+4 i b \pi \text {ArcSin}(c x)+2 b c^2 x^2 \text {ArcSin}(c x)-2 i b \text {ArcSin}(c x)^2-2 b \text {ArcTan}\left (\frac {c x}{-1+\sqrt {1-c^2 x^2}}\right )+8 b \pi \log \left (1+e^{-i \text {ArcSin}(c x)}\right )+2 b \pi \log \left (1-i e^{i \text {ArcSin}(c x)}\right )+4 b \text {ArcSin}(c x) \log \left (1-i e^{i \text {ArcSin}(c x)}\right )-2 b \pi \log \left (1+i e^{i \text {ArcSin}(c x)}\right )+4 b \text {ArcSin}(c x) \log \left (1+i e^{i \text {ArcSin}(c x)}\right )+2 a \log \left (1-c^2 x^2\right )-8 b \pi \log \left (\cos \left (\frac {1}{2} \text {ArcSin}(c x)\right )\right )+2 b \pi \log \left (-\cos \left (\frac {1}{4} (\pi +2 \text {ArcSin}(c x))\right )\right )-2 b \pi \log \left (\sin \left (\frac {1}{4} (\pi +2 \text {ArcSin}(c x))\right )\right )-4 i b \text {PolyLog}\left (2,-i e^{i \text {ArcSin}(c x)}\right )-4 i b \text {PolyLog}\left (2,i e^{i \text {ArcSin}(c x)}\right )}{4 c^4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2),x]

[Out]

-1/4*(2*a*c^2*x^2 + b*c*x*Sqrt[1 - c^2*x^2] + (4*I)*b*Pi*ArcSin[c*x] + 2*b*c^2*x^2*ArcSin[c*x] - (2*I)*b*ArcSi
n[c*x]^2 - 2*b*ArcTan[(c*x)/(-1 + Sqrt[1 - c^2*x^2])] + 8*b*Pi*Log[1 + E^((-I)*ArcSin[c*x])] + 2*b*Pi*Log[1 -
I*E^(I*ArcSin[c*x])] + 4*b*ArcSin[c*x]*Log[1 - I*E^(I*ArcSin[c*x])] - 2*b*Pi*Log[1 + I*E^(I*ArcSin[c*x])] + 4*
b*ArcSin[c*x]*Log[1 + I*E^(I*ArcSin[c*x])] + 2*a*Log[1 - c^2*x^2] - 8*b*Pi*Log[Cos[ArcSin[c*x]/2]] + 2*b*Pi*Lo
g[-Cos[(Pi + 2*ArcSin[c*x])/4]] - 2*b*Pi*Log[Sin[(Pi + 2*ArcSin[c*x])/4]] - (4*I)*b*PolyLog[2, (-I)*E^(I*ArcSi
n[c*x])] - (4*I)*b*PolyLog[2, I*E^(I*ArcSin[c*x])])/(c^4*d)

________________________________________________________________________________________

Maple [A]
time = 0.20, size = 165, normalized size = 1.15

method result size
derivativedivides \(\frac {-\frac {a \,c^{2} x^{2}}{2 d}-\frac {a \ln \left (c x -1\right )}{2 d}-\frac {a \ln \left (c x +1\right )}{2 d}+\frac {i b \arcsin \left (c x \right )^{2}}{2 d}-\frac {b \sqrt {-c^{2} x^{2}+1}\, c x}{4 d}-\frac {b \arcsin \left (c x \right ) c^{2} x^{2}}{2 d}+\frac {b \arcsin \left (c x \right )}{4 d}-\frac {b \arcsin \left (c x \right ) \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{d}+\frac {i b \polylog \left (2, -\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{2 d}}{c^{4}}\) \(165\)
default \(\frac {-\frac {a \,c^{2} x^{2}}{2 d}-\frac {a \ln \left (c x -1\right )}{2 d}-\frac {a \ln \left (c x +1\right )}{2 d}+\frac {i b \arcsin \left (c x \right )^{2}}{2 d}-\frac {b \sqrt {-c^{2} x^{2}+1}\, c x}{4 d}-\frac {b \arcsin \left (c x \right ) c^{2} x^{2}}{2 d}+\frac {b \arcsin \left (c x \right )}{4 d}-\frac {b \arcsin \left (c x \right ) \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{d}+\frac {i b \polylog \left (2, -\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{2 d}}{c^{4}}\) \(165\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arcsin(c*x))/(-c^2*d*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/c^4*(-1/2*a/d*c^2*x^2-1/2*a/d*ln(c*x-1)-1/2*a/d*ln(c*x+1)+1/2*I*b/d*arcsin(c*x)^2-1/4*b/d*(-c^2*x^2+1)^(1/2)
*c*x-1/2*b/d*arcsin(c*x)*c^2*x^2+1/4*b/d*arcsin(c*x)-b/d*arcsin(c*x)*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)+1/2*I*
b*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))^2)/d)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))/(-c^2*d*x^2+d),x, algorithm="maxima")

[Out]

-1/2*a*(x^2/(c^2*d) + log(c^2*x^2 - 1)/(c^4*d)) - 1/2*(2*c^4*d*integrate(1/2*(c^2*x^2*e^(1/2*log(c*x + 1) + 1/
2*log(-c*x + 1)) + e^(1/2*log(c*x + 1) + 1/2*log(-c*x + 1))*log(c*x + 1) + e^(1/2*log(c*x + 1) + 1/2*log(-c*x
+ 1))*log(-c*x + 1))/(c^7*d*x^4 - c^5*d*x^2 + (c^5*d*x^2 - c^3*d)*e^(log(c*x + 1) + log(-c*x + 1))), x) + c^2*
x^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))*log(c*x + 1) + arc
tan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))*log(-c*x + 1))*b/(c^4*d)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))/(-c^2*d*x^2+d),x, algorithm="fricas")

[Out]

integral(-(b*x^3*arcsin(c*x) + a*x^3)/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \frac {\int \frac {a x^{3}}{c^{2} x^{2} - 1}\, dx + \int \frac {b x^{3} \operatorname {asin}{\left (c x \right )}}{c^{2} x^{2} - 1}\, dx}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*asin(c*x))/(-c**2*d*x**2+d),x)

[Out]

-(Integral(a*x**3/(c**2*x**2 - 1), x) + Integral(b*x**3*asin(c*x)/(c**2*x**2 - 1), x))/d

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))/(-c^2*d*x^2+d),x, algorithm="giac")

[Out]

integrate(-(b*arcsin(c*x) + a)*x^3/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*asin(c*x)))/(d - c^2*d*x^2),x)

[Out]

int((x^3*(a + b*asin(c*x)))/(d - c^2*d*x^2), x)

________________________________________________________________________________________